
Design Report
Processing Data from Neuromorphic
Vision Sensors on Microcontrollers

Project Group 2:
Cristian Angheluș (s2680165)
Cezar Vintea (s2726467)
Emil Adam (s2811731)
Daniel Nicoară (s2467593)

Supervised by:
Dr. Yousefzadeh, Amirreza

Date
November 8, 2024

Contents

Contents... 1
Abstract... 3
Chapter 1 - Introduction...4

1.1 Neuromorphic Vision Technology... 4
1.2 Problem Statement...5
1.3 Project Objective.. 5
1.4 Tools Specifications... 6

Chapter 2 - Requirements Specification... 7
2.1 Client Overview... 7
2.2 Requirements Overview... 7
2.3 Functional Requirements...8
2.4 Non-Functional (Quality) Requirements.. 9
2.5 Summary...10

Chapter 3 - Planning and Project Proposal... 11
3.1 Project Approach and Phases..11

3.1.1 Exploration and Setup of the Hardware Components and Existing Demo...........................11
3.1.2 Requirements Specification and System Analysis..12
3.1.3 System Design and Model Development..12
3.1.4 Implementation and Integration..13
3.1.5 Testing and Optimization... 13
3.1.6 Documentation and Final Presentation...13

3.2 Project Timeline and Milestones.. 14
3.3 Risk Analysis... 14
3.4 Summary... 16

Chapter 4 - Design.. 17
4.1 System Architecture..17
4.2 Detailed Design... 18

4.2.1 Convolutional Neural Network... 18
4.2.2 Neuromorphic Vision Camera... 19

1

4.2.3 Microcontroller... 20
4.2.4 Graphical Interface:... 20

Chapter 5 - Implementation...22
5.1 Neural Network Implementation.. 22

5.1.1 Training.. 22
5.1.2 Predicting.. 23

5.2 CNN with NVS output... 24
5.3 Graphic Interface Design... 24

Chapter 6 - Testing and Evaluation..26
6.1 Test Plan..26
6.2 Test Results..26
6.3 User Feedback..27
6.4 Conclusion of Testing...27

Chapter 7 - Conclusion...28
Chapter 8 - Future Work...29
References..31
Appendix A...32

2

Abstract
This report documents the design and development of the “Processing Data from Neuromorphic
Vision Sensors on Microcontroller” project, as part of the “Design Project” course at the University of
Twente. The project aimed to leverage the neuromorphic vision sensors for real-time digit
recognition, capitalizing on their unique advantages such as low power consumption, high dynamic
range, and privacy preservation. Specifically, we used the Prophesee GENX320 neuromorphic vision
sensor mounted on an STM32 microcontroller, which was chosen for its leading-edge performance in
low-power, high-e�ciency applications. Building on an existing demo application, which displays the
camera output on the microcontroller screen, and the work of a previous student, we integrated a
neural network enhanced with convolutional neural network (CNN) layers to enable and improve the
digit recognition while ensuring the system met the constraints of embedded environments. The
model was trained using the MNIST dataset and optimized for real-time predictions displayed directly
on the STM32 board. This report outlines the full design trajectory, from requirement collection and
system architecture to detailed implementation, testing, and performance evaluation. The report
ends with a conclusion and a discussion regarding future work to expand and enhance the system's
functionality.

3

Chapter 1 - Introduction

1.1 Neuromorphic Vision Technology

Neuromorphic vision sensors, also known as event-based or dynamic vision sensors, are a class of
image sensors inspired by how human eyes and biological neural systems process visual information.
Unlike traditional frame-based cameras that capture entire images at fixed time intervals,
neuromorphic sensors only capture changes in the scene, such as movement or variations in light
intensity, on a per-pixel basis. This enables them to record events as they happen, rather than
producing a constant stream of redundant data, resulting in significantly lower data throughput and
power consumption.

At the heart of this technology is an event-driven architecture. Each pixel in a neuromorphic sensor
operates independently and asynchronously, detecting and recording changes in the scene as
individual “events”. This approach allows for ultra-fast response times and high dynamic range,
making these sensors highly effective in challenging lighting conditions and fast-motion
environments. In each event, the sensor records the pixel’s location, the time the change occurred,
and the polarity of the change (whether the light intensity increased or decreased). This output
structure imitates the way neurons in biological visual systems act in response to changes in stimuli,
making the sensor “neuromorphic” in nature.

This technology particularly benefits embedded systems with limited processing power and memory.
Traditional image processing methods continuously capture and analyze full frames, consuming
significant resources. In contrast, neuromorphic sensors filter out redundant information, making
them ideal for applications where power e�ciency and real-time processing are essential. This
e�ciency is especially valuable for edge devices, such as drones, robots, and wearables, which must
function autonomously with minimal energy consumption.

4

1.2 Problem Statement

Embedded systems increasingly require e�cient, real-time vision capabilities, especially in
applications where low power consumption, high-speed processing, and data privacy are essential.
Conventional frame-based cameras produce a continuous stream of redundant data, requiring
significant processing power and energy, which can quickly drain embedded system resources. This
makes traditional cameras and image-processing methods impractical for low-power, autonomous
systems operating in real time.

Neuromorphic vision sensors present a promising solution to this challenge. However, the integration
of neuromorphic technology with embedded hardware for real-time recognition tasks is still in the
exploratory phase. Limited research exists on leveraging this technology with known machine
learning models in constrained environments, such as microcontrollers, to deliver e�cient on-device
processing.

In this project, we will explore how well machine-learning techniques can be adapted to take
advantage of neuromorphic vision sensors, by integrating a neural network in the microcontroller to
process the data from the neuromorphic sensor and perform a simple task, such as recognizing
hand-written digits shown to the camera.

1.3 Project Objective

Our project proposes to leverage neuromorphic vision sensors for digit recognition, capitalizing on
their unique advantages. The objective is to develop a real-time digit recognition system using
neuromorphic vision technology in an embedded environment. By harnessing the unique capabilities
of the Prophesee GENX320 neuromorphic vision sensor on an STM32 microcontroller, this project
aims to create a power-e�cient, high-performance solution for digit detection, exploring the
possibilities and limitations of using known machine learning techniques on the new type of
neuromorphic vision. Specifically, the goal is to implement a more advanced neural network model
capable of recognizing handwritten digits shown to the camera and displaying the predicted digit on
the STM32 microcontroller’s screen in real-time.

5

1.4 Tools Specifications

For the project, we used the Prophesee GenX320 module kit for STM32 devices with an S-Mount lens.
The GenX320 module kit has been optimized for plug-and-play use with the STM32-F7 platform. It
integrates the Prophesee GenX320 1/5" format 320x320 event-based vision sensor, with a 320x320
array of 6.3μm contrast detection pixels, and high-speed event data output (equivalent to >10kfps
time resolution), which is suitable for the development of low-power embedded applications with
hard real-time constraints [1].

The microcontroller used is the STM32F746-DISCO, which is used as a reference design for user
application development before porting to the final product, thus simplifying the application
development. The Discovery kit enables a wide variety of applications to benefit from audio,
multi-sensor support, graphics, security, video, and high-speed connectivity features [2].

A more detailed specification of the tools can be found in Appendix A.

6

Chapter 2 - Requirements Specification

2.1 Client Overview

Our project supervisor, who also acts as our main client, is a member of the Computer Architecture
for Embedded Systems (CAES) group of the Faculty of Electrical Engineering, Mathematics, and
Computer Science at the University of Twente. The CAES group conducts research and education in
computer architecture and computing systems with a particular emphasis on embedded systems,
therefore this project aligns with the group’s goals of exploring neuromorphic vision and machine
learning applications on embedded hardware.

The client’s main role is to define the key requirements that align with his expectations of the project
and equip the team with the necessary tools to complete the project (the Prophesee GenX320 camera
attached to the STM-32 microcontroller). Since our client is also our supervisor, he provided the
necessary guidance to ensure that the project meets both functional and quality standards, while
respecting the time constraints given.

The client’s goal is to advance knowledge in neuromorphic vision applications and explore the
practicality of real-time neuromorphic visual processing on embedded systems. This project aims to
contribute to this knowledge and support the ongoing research and development in this area by
providing a foundation for future enhancements and applications of the system.

2.2 Requirements Overview

A list of requirements was gathered and formulated from the meetings with the supervisor. We
divided them into Functional and Quality requirements and classified them by their importance using
the MoSCoW method, except for the Won’t requirements, since the scope of the project is already
limited, so we don’t have a lot of requirements that need to be excluded or limited.

7

2.3 Functional Requirements

These requirements define the core functionality of the system.

Must-have - requirements that are critical to the project delivery:

● Handwritten Digit Recognition: The system must detect and recognize the handwritten
digits shown to the neuromorphic camera with adequate accuracy.

● Integration of CNN layers: The system must integrate a neural network trained for
handwritten digit recognition consisting of at least 2 Convolutional Neural Network (CNN)
layers to improve the accuracy of the previous existing model.

● Local Processing on the Microcontroller: The system must be embedded in the
microcontroller memory, relying only on the local resources to process the images and detect
the right digit using the neural network.

Should-have - requirements that are important, but not crucial for the delivery of the project:

● Latency Optimization - The system should minimize the delay between capturing an image
and displaying the recognition result.

● On-screen Prediction - The system should display the result of the digit prediction directly
on the microcontroller’s screen, improving the user experience.

● Real-time Detection - The system should recognize the digits in real time, ensuring
immediate feedback for a practical user experience.

Could-have - requirements that are desirable but not necessary and could improve the user
experience:

● Robustness to Varying Angles and Surfaces - The system could recognize the digits well
under different angles and from digits written on both digital screens and on paper.

8

2.4 Non-Functional (Quality) Requirements

These requirements define the quality attributes of the system.

Must-have:

● High Accuracy Prediction - The system must achieve a minimum accuracy of 90% under
typical conditions to ensure effective digit recognition.

● Feasible Response Time - The system must output the prediction of the digit within a
feasible period of less than 1 second.

● Resource Usage - The entire system must be optimized to fully fit inside the microcontroller
and not exceed its resources during the usage.

Should-have:

● Minimized Latency - The system should have minimal latency between input capture and
output display, supporting the goal of real-time digit recognition.

● Compact and Lightweight Model - The neural network model should occupy minimal
memory and processing resources to fit within the STM32’s limited capacity.

● User-Friendly Interface - The system should have a user-friendly interface, displaying the
predicted digit to the user clearly and understandably, requiring minimal intervention.

● Detailed Documentation - The system should have detailed documentation regarding the
implementation process that could help future students/researchers with expanding the
system’s capabilities.

Could-have:

● Consistent Performance Under Varying Conditions - The system could maintain stable
performance across different environments, ensuring robustness in real-world settings, such
as unclear images or bad lighting.

● Noise Reduction - The system could process the images of the digits and remove the
surrounding noise to improve the accuracy of predictions.

9

2.5 Summary

This requirements specification identifies the key functional and quality requirements necessary to
complete our project. The requirements were extracted from the meetings with our supervisor,
reflecting the desired outcomes for this project and serving as guidelines throughout our
implementation process. The MoSCoW prioritization method provides a clear framework, highlighting
essential features while allowing room for enhancements. By meeting these requirements, the
project aims to create a powerful digit recognition solution for neuromorphic vision sensors in an
embedded system that balances accuracy and e�ciency, achieving both technical and client
expectations.

10

Chapter 3 - Planning and Project Proposal
This chapter outlines our initial planned approach to implementing the project. It details the phased
project trajectory, key milestones, and contributions from each team member. Additionally, it covers
the organized meetings, the test plan to validate system performance, as well as risk analysis to
anticipate and mitigate potential challenges. This chapter provides an overview of how the project
was executed, from initial requirements to final testing, ensuring that all objectives are met
e�ciently within the project timeline.

3.1 Project Approach and Phases

To ensure the systematic and timely development, we identified and structured the project into
several phases:

3.1.1 Exploration and Setup of the Hardware Components and Existing Demo

Objective: To familiarize the team with the Prophesee GENX320 neuromorphic vision sensor and the
STM32 microcontroller, and have a general understanding of how the existing live demo works and
how the components are connected. Also, to set up the necessary tools and environment to be able
to modify and execute applications on the microcontroller.

Activities:

- Reviewing the existing general information regarding the Neuromorphic Vision Technology.
- Reading and analyzing the existing documentation and materials from Prophesee.
- Analyzing the documentation and tools for the STM32 microcontroller.
- Setting up and configuring the sensor and microcontroller, experimenting with the camera’s

event-based output, and testing the initial setup on the STM32.
- Meeting with Mustafa Canıtez, a PhD student who previously worked on a similar project.

Outcome: A general understanding of the camera and microcontroller functionalities, and the
technology in general. Additionally, gained a lot of insights from the meeting with the PhD student
who worked in the past on a similar project. His insights helped us a lot to understand the

11

functionality of the live demo from Prophesee, as well as implementation details and ideas from his
project, which enabled us to further extend it with our implementation.

3.1.2 Requirements Specification and System Analysis

Objective: To gather detailed and final requirements from the supervisor, analyze similar
implementations and come up with our planning of the project.

Activities:

- Organize meetings with the supervisor to gather concrete requirements and pivot the overall
planning and implementation details of the project.

- Establish and prioritize the concrete requirements.
- Organize a general plan and structure of the project.
- Establish and divide the responsibilities within the team.

Outcome: After discussions with the supervisor, we clarified and finalized the project’s scope.
Initially, the objective was to implement a neural network capable of person detection, however, after
advising the supervisor, we decided to implement digit detection by further expanding the work of a
previous student with a more complex neural network and a better GUI, showing the predicted digit
directly on the microcontroller’s screen. Also, we established and documented the formal
requirements, developed a project plan, and divided the tasks among the team members.

3.1.3 System Design and Model Development

Objective: To design the overall system architecture, including sensor integration, data
preprocessing, neural network model design, and the GUI design for representing the predicted digit.

Activities:

- Design the overall structure of the system, including the used libraries and implementations.
- Decide the CNN architecture design and structure for the digit recognition task.
- Create the design for the GUI that represents the predicted digit.

12

Outcome: Developed a general system architecture, defined the structure of the used CNN, and
designed the simple user interface for displaying the predicted digit directly to the screen of the
microcontroller.

3.1.4 Implementation and Integration

Objective: To implement the actual CNN and integrate it with the Prophesee sensor and STM32
microcontroller, ensuring it meets real-time performance requirements.

Activities: Code the actual model and integrate it in the live demo of the microcontroller, optimize
the neural network for real-time processing, and configure the STM32 to display the predictions.

Outcome: A functional prototype with integrated CNN layers, capturing data from the neuromorphic
sensor and displaying results on the STM32 in real-time, capable of presenting the results in a live
demo.

3.1.5 Testing and Optimization

Objective: To validate system performance in terms of accuracy and responsiveness.

Activities: Test the model using the MNIST test set, and using manual testing of the MNIST digits on
the actual sensor, measure accuracy and latency, and optimize model performance and functionality.

Outcome: A refined and validated system meeting the project’s requirements for real-time
performance and e�ciency.

3.1.6 Documentation and Final Presentation

Objective: To document the full project and prepare a final presentation for review.

Activities: Write the final design report and prepare the final presentation for review with the
supervisor.

Outcome: A comprehensive, well-documented documentation of the project and a final presentation
ready for reviewing to the client.

13

3.2 Project Timeline and Milestones

The following table represents a general timeline for the development process of our project. It
serves more as a guideline, as several phases of the project might overlap, and start earlier or have a
longer duration than expected.

Phase Timeline Milestone

Exploration & Setup Weeks 1–2 Successful sensor and microcontroller setup

Requirements Specification and System
Analysis

Weeks 1–2 Defined requirements and general planning of
the project

System Design and Model Development Weeks 3–5 Finalized CNN model and system architecture

Implementation and Integration Weeks 6–8 Implementation of the model and integration
on STM32. A working prototype.

Testing and Optimization Weeks 9–10 Validated and optimized final system

Documentation and Final Presentation Week 10 Submission of final report and presentation

3.3 Risk Analysis

To mitigate potential risks, we identified the following challenges and developed contingency
strategies:

Hardware Setup and Sensor Configuration:

● Risk: Di�culty in configuring and integrating the Prophesee GENX320 neuromorphic sensor
with the STM32 microcontroller, which could delay progress in later phases.

● Mitigation: Conduct a thorough documentation review, consult the PhD student who
previously worked on a similar project in case of encountering problems, and maintain close
contact with the supervisor. Additionally, plan extra time in the timeline for setup and
troubleshooting to ensure a robust initial configuration.

Model Complexity and STM32 Processing Constraints:

14

● Risk: The CNN model may exceed the STM32’s memory and processing capabilities, affecting
real-time performance and possibly requiring redesigns.

● Mitigation: Keep the model lightweight, implement techniques such as quantization to
reduce memory usage, and test early versions on the STM32 to ensure compatibility. Optimize
the CNN structure during the design phase to minimize resource demands and maintain a
balance between accuracy and performance.

Achieving Real-Time Performance:

● Risk: Ensuring the system meets real-time performance requirements on the STM32
microcontroller could be challenging, especially with the latency introduced by CNN
processing.

● Mitigation: Optimize code during the integration phase, leverage real-time profiling to
measure and reduce latency, and adjust CNN parameters as needed to achieve the required
speed. Conduct iterative testing on the STM32 during development to monitor real-time
performance and make adjustments as necessary.

Accuracy and Model Performance:

● Risk: The CNN model may fail to reach the target accuracy due to constraints in training,
processing power, or sensor limitations.

● Mitigation: Conduct thorough testing on the MNIST dataset and real-time captured inputs,
using manual testing with various handwritten digits. Optimize the model iteratively,
adjusting parameters and training techniques to maximize accuracy within hardware
constraints.

Delays in Documentation and Presentation Preparation:

● Risk: Completing the final detailed documentation and preparing a final comprehensive
presentation might take more time than anticipated, affecting the quality of the final
deliverable.

● Mitigation: Begin documenting each phase as soon as it’s completed and maintain a shared
project journal to track progress. Allocate time in advance for reviewing and refining the
documentation, and conduct a preliminary presentation to the team for feedback before the
final review.

15

3.4 Summary

In this chapter, we outlined our structured approach for implementing the project. We developed a
phased project trajectory, covering hardware setup, requirements specification, system design,
implementation, testing, and final documentation. Each phase includes clearly defined objectives,
key activities, and expected outcomes, ensuring a systematic and goal-oriented approach.

The project’s trajectory began with an exploration and setup phase to familiarize the team with the
Prophesee GENX320 sensor and STM32 microcontroller, followed by detailed requirements
specification and system analysis. This phase included meetings with our supervisor and a PhD
student with experience on a similar project, which provided valuable insights and led to a pivot from
person detection to digit detection. The design and model development phase laid the foundation for
the project, including the CNN model architecture, data preprocessing, and GUI design.

Additionally, we prepared a test plan to validate the system performance and developed a risk
analysis to identify and address potential challenges throughout the project.

We validated our plan and project approach in alignment with the project’s objectives and
supervisor’s expectations. With this validation, we are ready to proceed to the detailed design and
implementation phases of the project, which will be described in the following sections.

16

Chapter 4 - Design

4.1 System Architecture

The system is built around a neuromorphic vision sensor that mimics the function of biological
sensory neurons. Rather than capturing full-frame images, this sensor detects changes in the visual
scene, relaying event-based data to a microcontroller for processing. The key components of the
architecture include:

● Neuromorphic Vision Sensor: This sensor captures event-based visual data by detecting
scene changes rather than static images, significantly reducing computational and memory
demands. It mimics the human eye’s e�ciency in only reporting relevant changes, as
discussed in the reflection report . It includes the necessary C code from the o�cial
Prophesee demo project for the GEN320X NVS to function correctly with the microprocessor.

● Microcontroller: The microcontroller used in this project is the STM32F746-DISCO with the
above-mentioned sensor mounted on it.

● Neural Network: A pre-trained convolutional neural network (CNN), optimized for digit
recognition, runs on the microcontroller. Lightweight architecture, Maximum pooling, and
quantization were employed to fit the model within the microcontroller's limited memory,
enabling real-time event processing similar to biological sensory systems .

● Graphical Interface: The UI that shows the predicted digit and the area on the screen where
the hand-written digit should be placed to get an accurate prediction.

17

4.2 Detailed Design

4.2.1 Convolutional Neural Network

The convolutional neural network used in the project consists of 6 different layers which are:

● Convolutional layer 1
● Max pooling layer 1
● Convolutional layer 2
● Max pooling layer 2
● Fully connected layer 1
● Fully connected layer 2

The first convolutional layer is the one that takes the 28x28 picture of a hand-written digit. It uses 3
kernels of 5x5 dimension. Given the specifications, it has 75 weights that are then used in the
recognition.

The first max pooling layer shrinks down the size of feature maps that are initially 3 matrixes with
24x24 dimensions after the first convolutional layer. It uses a 2x2 matrix to find the local maximum
and save the answer in the resulting matrixes. The result of this layer is 3 12x12 matrixes.

18

The second convolutional layer takes the 3 matrixes that are 12x12 after the previous layer and
passes 6 kernels with the dimensions of 5x5 through them. As a result, it gets 6 8x8 matrixes and
saves a total of 450 weights.

The second max pooling layer is essentially identical to the first one and uses the same dimensions,
so after the procedure, the result is 6 matrixes of 4x4.

Before the image gets to the fully connected layers it is flattened into a single dimension array with
the length of 4*4*6.

The first fully connected layer has 84 neurons and thus 96*52 weights that the data has to pass
through. In the end, the result is an array of 52 elements.

The second fully connected layer has only 10 neurons and a total of 52*10 weights. The final array
contains the predictions of how similar every digit of the 10 is to the hand-written initial digit.

The final step is the function that finds the maximum from the final array and prints the index of the
maximum coe�cient.

4.2.2 Neuromorphic Vision Camera

The Prophesee GEN320X camera is mounted on
the microcontroller. The Prophesee o�cial
demo implementation has the drivers, pins, and
scripts that are necessary for the correct
functioning already configured. So, the frames
captured by the camera were correctly saved in
a convenient buffer by default.

19

4.2.3 Microcontroller

This is the full final hardware setup of the
project. The above-mentioned camera is
mounted in the STM32F46 DISCOVERY
model. It is considered an
energy-e�cient microcontroller and is
the model that is used in the o�cial
demo implementation from Prophesee,
so it is highly compatible with the
GEN320X and already has the necessary
drivers and pins set up.

4.2.4 Graphical Interface:

20

The graphical interface is displayed on the microcontroller screen. On the left side of the screen is
the label that contains the prediction from the neural network. On the right is the configured output
from the sensor that is set by default and also the region marked by a red square where the digit
should be placed to get a correct result.

21

Chapter 5 - Implementation

5.1 Neural Network Implementation

5.1.1 Training

The training for this specific neural Network is done by using the
https://github.com/arnogranier/cppCNN/ framework in C++. Initially, the plan was to use the same
framework for training and also prediction on the microcontroller. However, the STM32
microcontroller project programming is mainly done in C, and since the framework uses C++
abstraction and attributes that are not compatible with C there are compatibility issues. The
framework was not created with embedded applications in mind, it uses double precision type for
storing weights and performing calculations which would greatly exceed the memory and processing
capabilities of our board. Moreover, it contains a lot of methods that are not necessary for the
architecture of our project and only add complexity to the program. Given these arguments, the C++
framework was used only for training, testing, and saving weights of various CNN architectures.
TensorFlow was also a choice during the analysis of possible training libraries, but the decision was
not in its favor since the C++ library was less complex and more transparent with clear
documentation. The training was done on the MNIST dataset that contains 60000 pictures and labels
for training and 10000 pictures and labels for testing. The pictures are converted from grayscale to
only black and white(0 or 1) for compatibility reasons with the output taken from the sensor. The
learning rates are different for the feature detection and the classifier layers:

● Feature detection learning rate: 0.0003
● Classifier learning rate: 0.3

For optimal training and getting good accuracy without overfitting, we chose the number of 20
epochs for training. Our model has 6 layers with specifications explained in the design section. The
total number of weights is calculated as

● First convolutional layer: 75 (3*5*5)
● First max pooling layer: 0
● Second convolutional layer: 450 (6*3*5*5)

22

https://github.com/arnogranier/cppCNN/

● Second max pooling layer: 0
● First fully connected layer:4992 (96*52)
● Second fully connected layer: 520 (52*10)

The total number of weights is 6037. The weights are then quantized using a scaling factor of 10000
to later fit into an array of int16_t elements. Initially, the weights were used and saved only in their
original type which is double without quantization. The accuracy without quantization is higher, but
the memory usage is 4 times bigger which is why the 6037 weights are quantized and saved in a .txt
file for later to be dequantized on the microcontroller only when the float value is necessary. After the
training process, the file with the quantized weights is transformed into 4 strings (for each layer that
requires weights) that look like a declaration of an array in C. This is done to copy and paste the
weights in the form of an array in a separate C script that can be used straight away without reading
the weights from a file first. Reading the weights from a file and then storing them in data structures
interfered with the memory allocated for the loading of the UI and different elements.

5.1.2 Predicting

For a prediction mechanism, we have implemented the forward propagation functionality of the CNN
from scratch, based on the order of the weights in the weights file generated by the C++ library for
the prediction to go as intended after training. In comparison to the C++ library, our implementation
of the layers is a lot simpler and easier to debug, and it does not contain unnecessary functionality
and is more memory e�cient. The methods that are used in our implementation:

● Conv - the method used for the convolutional layers
● Sigmoid function
● Max_pooling used for the MP layers
● Predict is used to find the maximum from the 10-element array and return the digit
● Calculate_the_weight_of_a_9by9_block used to compress the image
● fullyConnectedLayer is used for both fully connected layers
● Predict_main is the main function where all the layers are used and the prediction is returned
● Dequantize_weight is used to dequantize a single weight when it is necessary to use it for

multiplication or other operations

The weights are saved in the weights.c script in the form of arrays and used by the methods
described above. The prediction is done by feeding the 28x28 picture to the predict_main function

23

where all the layers are used and the picture is passed through them. At the end, the function returns
the predicted digit.

5.2 CNN with NVS output

The main action of reading the input from the camera and passing it to the CNN is performed inside
task_frame_buffer.c. The camera input is stored inside a variable called frame_buffer_l1_one. From
this buffer, a specific region of 252x252 is taken starting from the top left corner. This is a
requirement since this region can then be compressed to 28x28 if every region of 9x9 is shrunk to a
single pixel. The function Calculate_the_weight_of_a_9by9_block takes each 9x9 block of this buffer
and adds up all the values(0 or 1) into one variable(minimum-0, maximum-81). After that, each
summed value is compared to a threshold. If a block contains fewer black pixels than the threshold
then its corresponding pixel in the 28x28 image will be white, otherwise black. This threshold is at 30
since it proved to be more balanced in keeping the features of the digit visible, but not shaving off too
much. Later, the 28x28 image is passed to the CNN via the predict_main function. The predicted digit
is stored in a variable that will subsequently be passed to the label that shows the prediction inside
the screen1_view.c script. The buffer is updated every cycle of the for statement thus ensuring that
the image is always read as quickly as possible. However, since the usage of the CNN and
pre-processing algorithms uses a lot of computational power if used on every cycle it could crash the
runtime. That is why the prediction is limited to once every 30 cycles which is equivalent to once
around 500 ms.

5.3 Graphic Interface Design

To create the GUI of the project the MX Designer software from STM32 was used. It offers a handful of
useful and easy-to-use tools to create designs for the microcontroller application. It is used together

24

with the STM32IDE from which the code can be edited and also the runs are performed. After all the
elements of the UI are placed on the chosen screen the code is generated inside the IDE. For this
project, the UI consists of the label that shows the predicted digit and also the red square that
highlights the region where the hand-written digit should be placed.

25

Chapter 6 - Testing and Evaluation

6.1 Test Plan

To assess the system's performance, we conducted tests focused on three key areas:

● Accuracy: The accuracy of the system was tested in 2 different ways. Firstly, the accuracy
was tested inside the CPP library using the predictions from 10000 MNIST pictures. The
second tests were run when the CNN was already mounted on the microcontroller by directly
showing 200 pictures of MNIST pictures to the camera on 3 different tests and monitoring the
outcome manually.

● Latency: Using the HAL_GetTick() method to track the start of the frame processing and the
end of it. The delay was tracked when the CNN was commented out and when it was active
and working together with the pre-processing algorithm.

● System E�ciency: Although power consumption wasn’t a primary focus, we briefly observed
the system’s performance under normal conditions to check its operational stability.

Given limited resources, the testing prioritized basic functionality over comprehensive evaluation,
providing initial insights into the system’s behavior.

6.2 Test Results

● Accuracy:
On the first test performed using the CPP library and MNIST dataset pictures the accuracy
was 96,5%. On the second test performed on the microcontroller itself using the method
described in the test plan, the accuracy dropped to 93%. One of the reasons for the change is
that the NVS captures some noise and also during pre-processing some of the features of the
digit and its thickness sometimes are shaved off. Moreover, we are losing some weight
precision in the weights quantization process, which can also affect accuracy.

● Latency:
The latency of the frame processing was tested 3 times. The first test was performed on the
frame processing algorithm that does not contain the CNN or any pre-processing and the

26

time that it took was 22 ms. The second test was performed on the frame processing
algorithm with the CNN which showed to be 45 ms from which 22 ms are for the general
frame processing, 7 ms are pre-processing and the rest of 16 ms are for CNN prediction.

6.3 User Feedback

We conducted informal testing with a small group of users, who provided the following feedback:

● Positive: Users found the system responsive and easy to use, appreciating the real-time
feedback and quick digit recognition.

● Areas for Improvement: Sometimes the system can make a wrong prediction if the digit is
not shown in the center of the red square, is too tilted, or is very zoomed out to the camera,
and if the digit is very heavily scorched or deformed to the point where even a human can
barely recognize it.

6.4 Conclusion of Testing

Overall, the tests performed on the system worked well and showed that this implementation of the
CNN can accurately predict digits if some specific conditions are met. Moreover, the processing time
from the CNN showed to be even less than the predefined processing of the frame written by
Prophesee, which can be considered a success. However, it could be possible to improve it to such an
extent that it will be able to run on every frame productively without any freezes.

27

Chapter 7 - Conclusion
This project successfully demonstrated the potential of using neuromorphic vision sensors for
e�cient, real-time digit recognition on microcontrollers. By utilizing the event-driven nature of these
sensors, the system was able to process changes in visual data with minimal computational demand,
highlighting the advantages of this technology in environments with limited resources.

The system met its core objectives, achieving satisfactory accuracy and low latency in digit
recognition tasks. By integrating neuromorphic vision with machine learning models, we showed that
even on constrained hardware, it is possible to achieve high-performance real-time vision
processing. These results indicate promising applications in fields such as autonomous systems,
robotics, and wearable devices, where quick response times and low power consumption are crucial.

Despite the system’s success under standard conditions, the project also revealed several areas for
enhancement. Future efforts will aim to expand the system's capabilities to recognize more complex
objects beyond handwritten digits. This will involve scaling the neural network and refining
event-processing algorithms to handle more diverse inputs while maintaining e�ciency.

Improving the system’s resilience under varying conditions, such as changes in lighting or motion, will
also be key for broader real-world applications. Furthermore, optimizing the interaction between
software and hardware could enhance scalability, allowing the system to tackle more complex tasks
without sacrificing performance.

In summary, this project represents a significant advancement in low-power, practical vision
processing systems using neuromorphic sensors. It provides a strong foundation for future work
focused on broadening functionality, improving adaptability, and exploring new applications in
dynamic, real-world environments.

28

Chapter 8 - Future Work
1. Expanding Object Detection Beyond Digits

Future work could extend the system’s capabilities to recognize more than just digits. By
training the model on more diverse datasets, it could detect letters, shapes, and even
real-world objects. This would open the door to applications in areas such as smart
surveillance, where it could monitor environments in real-time, industrial automation for
more precise machinery control, and assistive technologies that help users interact with
their surroundings more effectively.

2. Quantization improvement
In this project, we used quantization from double weights to int16_t weights and then again to
float when the weights were necessary for calculation. However, there are a couple of things
that can be changed to make the system work even faster. First of all, quantization can be
done to int8_t rather than int16_t. This would improve the speed of prediction since the
amount of data to be processed is divided by 2. Moreover, instead of dequantizing the
weights every time they are needed for a calculation, the calculation can be done on
quantized weights which would remove the necessity for dequantization entirely.

3. Exploring Alternative Microcontroller Platforms
Exploring microcontrollers with advanced AI capabilities, such as those featuring dedicated
neural processing units (NPUs), could greatly enhance the system’s speed and e�ciency.
These specialized platforms would make the system more capable of handling real-time
processing in more complex applications, expanding its usability across sectors such as
autonomous vehicles and advanced robotics.

4. Improving Robustness Under Varying Conditions
To ensure the system works reliably across different environments, future iterations should
focus on improving performance in challenging conditions like poor lighting or unusual input
patterns. This could be achieved by incorporating techniques such as data augmentation,
which simulates various conditions during training, or enhanced pre-processing methods.
These improvements would make the system more resilient and consistent in diverse
settings.

5. CNN Evolution
Since our project has only 2 convolution layers, 2 max pool layers, and 2 fully connected layers
including sigmoid activation and ReLU activation, our model can be called simple. That is why
some techniques could be used to make it more advanced such as biases, more layers, etc.

29

6. Compatibility issue
At the moment the CNN implemented for this project is compatible only with the weights
format provided by the CPP library mentioned above. This means it would not work with the
weights created by TensorFlow or any other popular libraries. It could become a problem once
the scope is to mount a more advanced NN that cannot be trained on the CPP library.

7. Testing improvement
Testing when the CNN is already mounted on the microcontroller becomes a long, manual,
and time-consuming process. To test the accuracy of the system all the pictures should be
shown to the camera directly which means the results have to be monitored manually by
someone. For us, every accuracy test on the device with 200 MNIST images takes around
20-30 minutes, which is quite long for one test. Moreover, a 200-image test set is too small of
a sample to be able to assess the accuracy correctly and as close to the truth as possible.

30

References
1. https://www.prophesee.ai/wp-content/uploads/2024/07/Metavision-Starter-Kit-STM32F7-G

enX320-Product-Brief-2024-COB.pdf
2. 32F746GDISCOVERY - Discovery kit with STM32F746NG MCU - STMicroelectronics
3. https://github.com/arnogranier/cppCNN/

31

https://www.prophesee.ai/wp-content/uploads/2024/07/Metavision-Starter-Kit-STM32F7-GenX320-Product-Brief-2024-COB.pdf
https://www.prophesee.ai/wp-content/uploads/2024/07/Metavision-Starter-Kit-STM32F7-GenX320-Product-Brief-2024-COB.pdf
https://www.st.com/en/evaluation-tools/32f746gdiscovery.html#st_description_sec-nav-tab
https://github.com/arnogranier/cppCNN/

Appendix A

GenX320 module Specification

STM32F746-DISCO Specification

32

